Category: Hard Questions: Education

Hard Questions: Education

  • Whole-Person Education for AI Engineers: Presented to CEEA (Peer Reviewed)

    Whole-Person Education for AI Engineers: Presented to CEEA (Peer Reviewed)

    This autoethnographic study explores the need for interdisciplinary education spanning both technical an philosophical skills – as such, this study leverages whole-person education as a theoretical approach needed in AI engineering education to address the limitations of current paradigms that prioritize technical expertise over ethical and societal considerations. Drawing on a collaborative autoethnography approach of fourteen diverse stakeholders, the study identifies key motivations driving the call for change, including the need for global perspectives, bridging the gap between academia and industry, integrating ethics and societal impact, and fostering interdisciplinary collaboration. The findings challenge the myths of technological neutrality and technosaviourism, advocating for a future where AI engineers are equipped not only with technical skills but also with the ethical awareness, social responsibility, and interdisciplinary understanding necessary to navigate the complex challenges of AI development. The study provides valuable insights and recommendations for transforming AI engineering education to ensure the responsible development of AI technologies.

    More Information

  • WIP: Gen AI in Engineering Education and the Da Vinci Cube (Peer Reviewed)

    WIP: Gen AI in Engineering Education and the Da Vinci Cube (Peer Reviewed)

    As generative AI (GenAI) tools rapidly transform the engineering landscape, a critical question emerges: Are current educational innovations adequately preparing engineers for the socio-technical challenges of the future? This work-in-progress paper presents two key contributions. First, we build on prior work presenting a systematic review of over 160 scholarly articles on GenAI implementations in engineering education, revealing a predominant focus on enhancing technical proficiency while often neglecting essential socio-technical competencies. Second, we apply an emerging framework—the da Vinci Cube (dVC)—to support engineering educators in critically evaluating GenAI-driven innovations. The dVC framework extends traditional models of innovation by incorporating three dimensions: the pursuit of knowledge, consideration of use, and contemplation of sentiment. Our analysis suggests that while GenAI tools can improve problem-solving and technical efficiency, engineering education must also address ethical, human-centered, and societal impacts. The dVC framework provides a structured lens for assessing how GenAI tools are integrated into curricula and research, encouraging a more holistic, reflective approach. Ultimately, this paper aims to provoke dialogue on the future of engineering education and to challenge the prevailing assumption that technical skill development alone is sufficient in an AI-mediated world.

    More Information

  • Work in Progress: Exclusive Rhetoric in AI Conference Mission Statements

    Work in Progress: Exclusive Rhetoric in AI Conference Mission Statements

    AI conferences are pivotal spaces for knowledge exchange, collaboration, and shaping the trajectory of research, practice, and education. This paper presents preliminary findings from an analysis of AI conference mission statements, investigating how their stated goals affect who is welcomed into AI conversations. We find that many mission statements reflect assumptions that may unintentionally narrow participation and reinforce disciplinary and institutional silos. This limits engagement from a broad range of contributors—including educators, students, working professionals, and even younger users —who are essential to a thriving AI ecosystem. We advocate for clearer framing that supports democratizing and demystifying AI. By broadening participation and intentionally fostering cross-sector and interdisciplinary connections, AI conferences can help unlock more innovation.

    More Information

  • Canary in the Mine: An LLM Augmented Survey of Disciplinary Complaints to the Ordre des ingénieurs du Québec (OIQ) (Peer Reviewed)

    Canary in the Mine: An LLM Augmented Survey of Disciplinary Complaints to the Ordre des ingénieurs du Québec (OIQ) (Peer Reviewed)

    This study investigates disciplinary incidents involving engineers in Quebec, shedding light on critical gaps in engineering education. Through a comprehensive review of the disciplinary register of the Ordre des ingénieurs du Québec (OIQ)’s disciplinary register for 2010 to 2024, researchers from engineering education and human resources management in technological development laboratories conducted a thematic analysis of reported incidents to identify patterns, trends, and areas for improvement. The analysis aims to uncover the most common types of disciplinary incidents, underlying causes, and implications for the field in how engineering education addresses (or fails to address) these issues. Our findings identify recurring themes, analyze root causes, and offer recommendations for engineering educators and students to mitigate similar incidents. This research has implications for informing curriculum development, professional development, and performance evaluation, ultimately fostering a culture of professionalism and ethical responsibility in engineering. By providing empirical evidence of disciplinary incidents and their causes, this study contributes to evidence-based practices for engineering education and professional development, enhancing the engineering education community’s understanding of professionalism and ethics.

    More Information

  • Pre-conference workshop: Université de l’Alberta Conférence Annuelle

    Pre-conference workshop: Université de l’Alberta Conférence Annuelle

    We were pleased to sponsor the 2025 Campus St Jean Annual Conference of the University of Alberta. Two Aula Fellows were present, and offered a workshop for faculty. The event was well attended. As Fellows, we were happy to receive feedback that the workshop empowered faculty to continue conversations on the complexities of AI in society and at the University, outside the conference and into their fields of work. Some of the attendees have since joined us as Fellows.

    More Information

  • Potential and perils of large language models as judges of unstructured textual data

    Potential and perils of large language models as judges of unstructured textual data

    Rapid advancements in large language models have unlocked remarkable capabilities when it comes to processing and summarizing unstructured text data. This has implications for the analysis of rich, open-ended datasets, such as survey responses, where LLMs hold the promise of efficiently distilling key themes and sentiments. However, as organizations increasingly turn to these powerful AI systems to make sense of textual feedback, a critical question arises, can we trust LLMs to accurately represent the perspectives contained within these text based datasets? While LLMs excel at generating human-like summaries, there is a risk that their outputs may inadvertently diverge from the true substance of the original responses. Discrepancies between the LLM-generated outputs and the actual themes present in the data could lead to flawed decision-making, with far-reaching consequences for organizations. This research investigates the effectiveness of LLM-as-judge models to evaluate the thematic alignment of summaries generated by other LLMs. We utilized an Anthropic Claude model to generate thematic summaries from open-ended survey responses, with Amazon’s Titan Express, Nova Pro, and Meta’s Llama serving as judges. This LLM-as-judge approach was compared to human evaluations using Cohen’s kappa, Spearman’s rho, and Krippendorff’s alpha, validating a scalable alternative to traditional human centric evaluation methods. Our findings reveal that while LLM-as-judge offer a scalable solution comparable to human raters, humans may still excel at detecting subtle, context-specific nuances. Our research contributes to the growing body of knowledge on AI assisted text analysis. Further, we provide recommendations for future research, emphasizing the need for careful consideration when generalizing LLM-as-judge models across various contexts and use cases.

    More Information

  • Evaluating Online AI Detection Tools: An Empirical Study Using Microsoft Copilot-Generated Content

    Evaluating Online AI Detection Tools: An Empirical Study Using Microsoft Copilot-Generated Content

    Our findings reveal significant inconsistencies and limitations in AI detection tools, with many failing to accurately identify Copilotauthored text. Examining eight freely available online AI detection tools using text samples produced by Microsoft Copilot, we assess their accuracy and consistency. We feed a short sentence and a small paragraph and note the estimate of these tools. Our results suggest that educators should not rely on these tools to check for AI use.

    More Information

  • Qualitative Insights Tool (QualIT): LLM Enhanced Topic Modeling

    Qualitative Insights Tool (QualIT): LLM Enhanced Topic Modeling

    Topic modeling is a widely used technique for uncovering thematic structures from large text corpora. However, most topic modeling approaches e.g. Latent Dirichlet Allocation (LDA) struggle to capture nuanced semantics and contextual understanding required to accurately model complex narratives. Recent advancements in this area include methods like BERTopic, which have demonstrated significantly improved topic coherence and thus established a new standard for benchmarking. In this paper, we present a novel approach, the Qualitative Insights Tool (QualIT) that integrates large language models (LLMs) with existing clustering-based topic modeling approaches. Our method leverages the deep contextual understanding and powerful language generation capabilities of LLMs to enrich the topic modeling process using clustering. We evaluate our approach on a large corpus of news articles and demonstrate substantial improvements in topic coherence and topic diversity compared to baseline topic modeling techniques. On the 20 ground-truth topics, our method shows 70% topic coherence (vs 65% & 57% benchmarks) and 95.5% topic diversity (vs 85% & 72% benchmarks). Our findings suggest that the integration of LLMs can unlock new opportunities for topic modeling of dynamic and complex text data, as is common in talent management research contexts.

    More Information

  • Trustworthy and Responsible AI for Human-Centric Autonomous Decision-Making Systems

    Trustworthy and Responsible AI for Human-Centric Autonomous Decision-Making Systems

    Artificial Intelligence (AI) has paved the way for revolutionary decision-making processes, which if harnessed appropriately, can contribute to advancements in various sectors, from healthcare to economics. However, its black box nature presents significant ethical challenges related to bias and transparency. AI applications are hugely impacted by biases, presenting inconsistent and unreliable findings, leading to significant costs and consequences, highlighting and perpetuating inequalities and unequal access to resources. Hence, developing safe, reliable, ethical, and Trustworthy AI systems is essential. Our team of researchers working with Trustworthy and Responsible AI, part of the Transdisciplinary Scholarship Initiative within the University of Calgary, conducts research on Trustworthy and Responsible AI, including fairness, bias mitigation, reproducibility, generalization, interpretability, and authenticity. In this paper, we review and discuss the intricacies of AI biases, definitions, methods of detection and mitigation, and metrics for evaluating bias. We also discuss open challenges with regard to the trustworthiness and widespread application of AI across diverse domains of human-centric decision making, as well as guidelines to foster Responsible and Trustworthy AI models.

    More Information

  • Path to Personalization: A Systematic Review of GenAI in Engineering Education

    Path to Personalization: A Systematic Review of GenAI in Engineering Education

    This systematic review paper provides a comprehensive synthesis across 162 articles on Generative Artificial Intelligence (GenAI) in engineering education (EE), making two specific contributions to advance research in the space. First, we develop a taxonomy that categorizes the current research landscape, identifying key areas such as Coding or Writing Assistance, Design Methodology, and Personalization. Second, we highlight significant gaps and opportunities, such as lack of customer-centricity and need for increased transparency in future research, paving the way for increased personalization in GenAI-augmented engineering education. There are indications of widening lines of enquiry, for example into human-AI collaborations and multidisciplinary learning. We conclude that there are opportunities to enrich engineering epistemology and
    competencies with the use of GenAI tools for educators and students, as well as a need for further research into best and novel practices. Our discussion serves as a roadmap for researchers and educators, guiding the development of GenAI applications that will continue to transform the engineering education landscape, in classrooms and the workforce.

    More Information

  • Exploring and Expanding Support for International Students in Engineering: Faculty Reflections Beyond Academic Boundaries

    Exploring and Expanding Support for International Students in Engineering: Faculty Reflections Beyond Academic Boundaries

    This is a student paper:

    Expanding upon our previous work in the blinded for review paper, this research seeks to delve into the realm of self-reflection among engineering faculty members who regularly interact with international students. The primary objective is to investigate how these faculty members address the unique needs of the international student community. The Challenge and Support model by Nevitt Sanford serves as our guiding framework for this research, and we employ narrative analysis due to its potential in analyzing differences in cases and describing the dynamics of individual narratives within their distinct contexts (Floersch et al., 2010; Simons et al., 2008).

    This paper aims to answer the following research question: How do engineering faculty members address the multifaceted and distinct needs of international students? It is important to understand these perspectives when considering how to support international engineering students given that each student has unique and intricate experiences in both academic and non-academic aspects.

    More Information

  • Investigating Transition Phases: An Autoethnographic Study of International Women of Color Engineering Educators in the US

    Investigating Transition Phases: An Autoethnographic Study of International Women of Color Engineering Educators in the US

    The study aims to explore the transitions experienced by international Women of Color (IWoC) engineers in the US as they navigate their academic and professional lives. Motivated by the lack of research on IWoC’s experiences, specifically around transition points of their lives, four international Women of Color participated in this qualitative auto-ethnographic deep-dive. All four researchers have attended college in the United States for their high educational degrees focused on education/engineering education and are currently involved in engineering education scholarship work.

    More Information