Category: Varsha Kesavan, M.Sc.

Varsha Kesavan, M.Sc.
Biography
LinkedIn
Google Scholar

  • Tech Tool: the Survivor’s Dashboard

    Tech Tool: the Survivor’s Dashboard

    A dashboard of curated information for survivor’s of modern slavery and the people who work to rescue others. This tool is available for collaborations. Please contact our Technical Director, François Pelletier, for more information.

  • Canary in the Mine: An LLM Augmented Survey of Disciplinary Complaints to the Ordre des ingénieurs du Québec (OIQ) (Peer Reviewed)

    Canary in the Mine: An LLM Augmented Survey of Disciplinary Complaints to the Ordre des ingénieurs du Québec (OIQ) (Peer Reviewed)

    This study investigates disciplinary incidents involving engineers in Quebec, shedding light on critical gaps in engineering education. Through a comprehensive review of the disciplinary register of the Ordre des ingénieurs du Québec (OIQ)’s disciplinary register for 2010 to 2024, researchers from engineering education and human resources management in technological development laboratories conducted a thematic analysis of reported incidents to identify patterns, trends, and areas for improvement. The analysis aims to uncover the most common types of disciplinary incidents, underlying causes, and implications for the field in how engineering education addresses (or fails to address) these issues. Our findings identify recurring themes, analyze root causes, and offer recommendations for engineering educators and students to mitigate similar incidents. This research has implications for informing curriculum development, professional development, and performance evaluation, ultimately fostering a culture of professionalism and ethical responsibility in engineering. By providing empirical evidence of disciplinary incidents and their causes, this study contributes to evidence-based practices for engineering education and professional development, enhancing the engineering education community’s understanding of professionalism and ethics.

    More Information

  • Deep Learning based Automatic Image Caption Generation

    Deep Learning based Automatic Image Caption Generation

    The paper aims at generating automated captions by learning the contents of the image. At present images are annotated with human intervention and it becomes nearly impossible task for huge commercial databases. The image database is given as input to a deep neural network (Convolutional Neural Network (CNN)) encoder for generating “thought vector” which extracts the features and nuances out of our image and RNN (Recurrent Neural Network) decoder is used to translate the features and objects given by our image to obtain sequential, meaningful description of the image. In this paper, we systematically analyze different deep neural network-based image caption generation approaches and pretrained models to conclude on the most efficient model with fine-tuning. The analyzed models contain both with and without `attention’ concept to optimize the caption generating ability of the model.

    More Information