Category: Sreyoshi Bhaduri, Ph.D.

Sreyoshi Bhaduri, Ph.D.
Biography
Linkedin
Google Scholar

  • WIP: Gen AI in Engineering Education and the Da Vinci Cube (Peer Reviewed)

    WIP: Gen AI in Engineering Education and the Da Vinci Cube (Peer Reviewed)

    As generative AI (GenAI) tools rapidly transform the engineering landscape, a critical question emerges: Are current educational innovations adequately preparing engineers for the socio-technical challenges of the future? This work-in-progress paper presents two key contributions. First, we build on prior work presenting a systematic review of over 160 scholarly articles on GenAI implementations in engineering education, revealing a predominant focus on enhancing technical proficiency while often neglecting essential socio-technical competencies. Second, we apply an emerging framework—the da Vinci Cube (dVC)—to support engineering educators in critically evaluating GenAI-driven innovations. The dVC framework extends traditional models of innovation by incorporating three dimensions: the pursuit of knowledge, consideration of use, and contemplation of sentiment. Our analysis suggests that while GenAI tools can improve problem-solving and technical efficiency, engineering education must also address ethical, human-centered, and societal impacts. The dVC framework provides a structured lens for assessing how GenAI tools are integrated into curricula and research, encouraging a more holistic, reflective approach. Ultimately, this paper aims to provoke dialogue on the future of engineering education and to challenge the prevailing assumption that technical skill development alone is sufficient in an AI-mediated world.

    More Information

  • Work in Progress: Exclusive Rhetoric in AI Conference Mission Statements

    Work in Progress: Exclusive Rhetoric in AI Conference Mission Statements

    AI conferences are pivotal spaces for knowledge exchange, collaboration, and shaping the trajectory of research, practice, and education. This paper presents preliminary findings from an analysis of AI conference mission statements, investigating how their stated goals affect who is welcomed into AI conversations. We find that many mission statements reflect assumptions that may unintentionally narrow participation and reinforce disciplinary and institutional silos. This limits engagement from a broad range of contributors—including educators, students, working professionals, and even younger users —who are essential to a thriving AI ecosystem. We advocate for clearer framing that supports democratizing and demystifying AI. By broadening participation and intentionally fostering cross-sector and interdisciplinary connections, AI conferences can help unlock more innovation.

    More Information

  • Canary in the Mine: An LLM Augmented Survey of Disciplinary Complaints to the Ordre des ingénieurs du Québec (OIQ) (Peer Reviewed)

    Canary in the Mine: An LLM Augmented Survey of Disciplinary Complaints to the Ordre des ingénieurs du Québec (OIQ) (Peer Reviewed)

    This study investigates disciplinary incidents involving engineers in Quebec, shedding light on critical gaps in engineering education. Through a comprehensive review of the disciplinary register of the Ordre des ingénieurs du Québec (OIQ)’s disciplinary register for 2010 to 2024, researchers from engineering education and human resources management in technological development laboratories conducted a thematic analysis of reported incidents to identify patterns, trends, and areas for improvement. The analysis aims to uncover the most common types of disciplinary incidents, underlying causes, and implications for the field in how engineering education addresses (or fails to address) these issues. Our findings identify recurring themes, analyze root causes, and offer recommendations for engineering educators and students to mitigate similar incidents. This research has implications for informing curriculum development, professional development, and performance evaluation, ultimately fostering a culture of professionalism and ethical responsibility in engineering. By providing empirical evidence of disciplinary incidents and their causes, this study contributes to evidence-based practices for engineering education and professional development, enhancing the engineering education community’s understanding of professionalism and ethics.

    More Information

  • Whole-Person Education for AI Engineers: Presented to CEEA (Peer Reviewed)

    Whole-Person Education for AI Engineers: Presented to CEEA (Peer Reviewed)

    This autoethnographic study explores the need for interdisciplinary education spanning both technical an philosophical skills – as such, this study leverages whole-person education as a theoretical approach needed in AI engineering education to address the limitations of current paradigms that prioritize technical expertise over ethical and societal considerations. Drawing on a collaborative autoethnography approach of fourteen diverse stakeholders, the study identifies key motivations driving the call for change, including the need for global perspectives, bridging the gap between academia and industry, integrating ethics and societal impact, and fostering interdisciplinary collaboration. The findings challenge the myths of technological neutrality and technosaviourism, advocating for a future where AI engineers are equipped not only with technical skills but also with the ethical awareness, social responsibility, and interdisciplinary understanding necessary to navigate the complex challenges of AI development. The study provides valuable insights and recommendations for transforming AI engineering education to ensure the responsible development of AI technologies.

    More Information

  • What We Do Not Know: GPT Use in Business and Management

    What We Do Not Know: GPT Use in Business and Management

    This systematic review examines peer-reviewed studies on application of GPT in business management, revealing significant knowledge gaps. Despite identifying interesting research directions such as best practices, benchmarking, performance comparisons, social impacts, our analysis yields only 42 relevant studies for the 22 months since its release. There are so few studies looking at a particular sector or subfield that management researchers, business consultants, policymakers, and journalists do not yet have enough information to make well-founded statements on how GPT is being used in businesses. The primary contribution of this paper is a call to action for further research. We provide a description of current research and identify knowledge gaps on the use of GPT in business. We cover the management subfields of finance, marketing, human resources, strategy, operations, production, and analytics, excluding retail and sales. We discuss gaps in knowledge of GPT potential consequences on employment, productivity, environmental costs, oppression, and small businesses. We propose how management consultants and the media can help fill those gaps. We call for practical work on business control systems as they relate to existing and foreseeable AI-related business challenges. This work may be of interest to managers, to management researchers, and to people working on AI in society.

    More Information

  • IndicMMLU-Pro: Benchmarking Indic Large Language Models on Multi-Task Language Understanding

    IndicMMLU-Pro: Benchmarking Indic Large Language Models on Multi-Task Language Understanding

    Known by more than 1.5 billion people in the Indian subcontinent, Indic languages present unique challenges and opportunities for natural language processing (NLP) research due to their rich cultural heritage, linguistic diversity, and complex structures. IndicMMLU-Pro is a comprehensive benchmark designed to evaluate Large Language Models (LLMs) across Indic languages, building upon the MMLU Pro (Massive Multitask Language Understanding) framework. Covering major languages such as Hindi, Bengali, Gujarati, Marathi, Kannada, Punjabi, Tamil, Telugu, and Urdu, our benchmark addresses the unique challenges and opportunities presented by the linguistic diversity of the Indian subcontinent. This benchmark encompasses a wide range of tasks in language comprehension, reasoning, and generation, meticulously crafted to capture the intricacies of Indian languages. IndicMMLU-Pro provides a standardized evaluation framework to push the research boundaries in Indic language AI, facilitating the development of more accurate, efficient, and culturally sensitive models. This paper outlines the benchmarks’ design principles, task taxonomy, and data collection methodology, and presents baseline results from state-of-the-art multilingual models.

    More Information

  • Potential and perils of large language models as judges of unstructured textual data

    Potential and perils of large language models as judges of unstructured textual data

    Rapid advancements in large language models have unlocked remarkable capabilities when it comes to processing and summarizing unstructured text data. This has implications for the analysis of rich, open-ended datasets, such as survey responses, where LLMs hold the promise of efficiently distilling key themes and sentiments. However, as organizations increasingly turn to these powerful AI systems to make sense of textual feedback, a critical question arises, can we trust LLMs to accurately represent the perspectives contained within these text based datasets? While LLMs excel at generating human-like summaries, there is a risk that their outputs may inadvertently diverge from the true substance of the original responses. Discrepancies between the LLM-generated outputs and the actual themes present in the data could lead to flawed decision-making, with far-reaching consequences for organizations. This research investigates the effectiveness of LLM-as-judge models to evaluate the thematic alignment of summaries generated by other LLMs. We utilized an Anthropic Claude model to generate thematic summaries from open-ended survey responses, with Amazon’s Titan Express, Nova Pro, and Meta’s Llama serving as judges. This LLM-as-judge approach was compared to human evaluations using Cohen’s kappa, Spearman’s rho, and Krippendorff’s alpha, validating a scalable alternative to traditional human centric evaluation methods. Our findings reveal that while LLM-as-judge offer a scalable solution comparable to human raters, humans may still excel at detecting subtle, context-specific nuances. Our research contributes to the growing body of knowledge on AI assisted text analysis. Further, we provide recommendations for future research, emphasizing the need for careful consideration when generalizing LLM-as-judge models across various contexts and use cases.

    More Information

  • Advancements in Modern Recommender Systems: Industrial Applications in Social Media, E-commerce, Entertainment, and Beyond

    Advancements in Modern Recommender Systems: Industrial Applications in Social Media, E-commerce, Entertainment, and Beyond

    In the current digital era, the proliferation of online content has overwhelmed users with vast amounts of information, necessitating effective filtering mechanisms. Recommender systems have become indispensable in addressing this challenge, tailoring content to individual preferences and significantly enhancing user experience. This paper delves into the latest advancements in recommender systems, analyzing 115 research papers and 10 articles, and dissecting their application across various domains such as e-commerce, entertainment, and social media. We categorize these systems into content-based, collaborative, and hybrid approaches, scrutinizing their methodologies and performance. Despite their transformative impact, recommender systems grapple with persistent issues like scalability, cold-start problems, and data sparsity. Our comprehensive review not only maps the current landscape of recommender system research but also identifies critical gaps and future directions. By offering a detailed analysis of datasets, simulation platforms, and evaluation metrics, we provide a robust foundation for developing next-generation recommender systems poised to deliver more accurate, efficient, and personalized user experiences, inspiring innovative solutions to drive forward the evolution of recommender technology.

    More Information

  • Qualitative Insights Tool (QualIT): LLM Enhanced Topic Modeling

    Qualitative Insights Tool (QualIT): LLM Enhanced Topic Modeling

    Topic modeling is a widely used technique for uncovering thematic structures from large text corpora. However, most topic modeling approaches e.g. Latent Dirichlet Allocation (LDA) struggle to capture nuanced semantics and contextual understanding required to accurately model complex narratives. Recent advancements in this area include methods like BERTopic, which have demonstrated significantly improved topic coherence and thus established a new standard for benchmarking. In this paper, we present a novel approach, the Qualitative Insights Tool (QualIT) that integrates large language models (LLMs) with existing clustering-based topic modeling approaches. Our method leverages the deep contextual understanding and powerful language generation capabilities of LLMs to enrich the topic modeling process using clustering. We evaluate our approach on a large corpus of news articles and demonstrate substantial improvements in topic coherence and topic diversity compared to baseline topic modeling techniques. On the 20 ground-truth topics, our method shows 70% topic coherence (vs 65% & 57% benchmarks) and 95.5% topic diversity (vs 85% & 72% benchmarks). Our findings suggest that the integration of LLMs can unlock new opportunities for topic modeling of dynamic and complex text data, as is common in talent management research contexts.

    More Information

  • Path to Personalization: A Systematic Review of GenAI in Engineering Education

    Path to Personalization: A Systematic Review of GenAI in Engineering Education

    This systematic review paper provides a comprehensive synthesis across 162 articles on Generative Artificial Intelligence (GenAI) in engineering education (EE), making two specific contributions to advance research in the space. First, we develop a taxonomy that categorizes the current research landscape, identifying key areas such as Coding or Writing Assistance, Design Methodology, and Personalization. Second, we highlight significant gaps and opportunities, such as lack of customer-centricity and need for increased transparency in future research, paving the way for increased personalization in GenAI-augmented engineering education. There are indications of widening lines of enquiry, for example into human-AI collaborations and multidisciplinary learning. We conclude that there are opportunities to enrich engineering epistemology and
    competencies with the use of GenAI tools for educators and students, as well as a need for further research into best and novel practices. Our discussion serves as a roadmap for researchers and educators, guiding the development of GenAI applications that will continue to transform the engineering education landscape, in classrooms and the workforce.

    More Information

  • Reconciling methodological paradigms: Employing large language models as novice qualitative research assistants in talent management research

    Reconciling methodological paradigms: Employing large language models as novice qualitative research assistants in talent management research

    Qualitative data collection and analysis approaches, such as those employing interviews and focus groups, provide rich insights into customer attitudes, sentiment, and behavior. However, manually analyzing qualitative data requires extensive time and effort to identify relevant topics and thematic insights. This study proposes a novel approach to address this challenge by leveraging Retrieval Augmented Generation (RAG) based Large Language Models (LLMs) for analyzing interview transcripts. The novelty of this work lies in strategizing the research inquiry as one that is augmented by an LLM that serves as a novice research assistant. This research explores the mental model of LLMs to serve as novice qualitative research assistants for researchers in the talent management space. A RAG-based LLM approach is extended to enable topic modeling of semi-structured interview data, showcasing the versatility of these models beyond their traditional use in information retrieval and search. Our findings demonstrate that the LLM-augmented RAG approach can successfully extract topics of interest, with significant coverage compared to manually generated topics from the same dataset. This establishes the viability of employing LLMs as novice qualitative research assistants. Additionally, the study recommends that researchers leveraging such models lean heavily on quality criteria used in traditional qualitative research to ensure rigor and trustworthiness of their approach. Finally, the paper presents key recommendations for industry practitioners seeking to reconcile the use of LLMs with established qualitative research paradigms, providing a roadmap for the effective integration of these powerful, albeit novice, AI tools in the analysis of qualitative datasets within talent

    More Information

  • Exploring and Expanding Support for International Students in Engineering: Faculty Reflections Beyond Academic Boundaries

    Exploring and Expanding Support for International Students in Engineering: Faculty Reflections Beyond Academic Boundaries

    This is a student paper:

    Expanding upon our previous work in the blinded for review paper, this research seeks to delve into the realm of self-reflection among engineering faculty members who regularly interact with international students. The primary objective is to investigate how these faculty members address the unique needs of the international student community. The Challenge and Support model by Nevitt Sanford serves as our guiding framework for this research, and we employ narrative analysis due to its potential in analyzing differences in cases and describing the dynamics of individual narratives within their distinct contexts (Floersch et al., 2010; Simons et al., 2008).

    This paper aims to answer the following research question: How do engineering faculty members address the multifaceted and distinct needs of international students? It is important to understand these perspectives when considering how to support international engineering students given that each student has unique and intricate experiences in both academic and non-academic aspects.

    More Information