The majority of students who choose to major in engineering do so to become a part of the community of practice of professional engineers (Johri & Olds, 2011), meaning that they want to have adequate exposure to what a career as a professional engineer could potentially be as part of their college experience. However, according to Jonassen (2014), engineering graduates are not well trained to contribute to the workplace due to the complexities associated with engineering work. Stevens, Johri, and O’Connor (2014) described engineering work as that which involves complexity, ambiguity, and contradictions. Since developing the skills for innovation involves analysis of complex, ambiguous, ill-defined, real-world problems (Daly, Mosyjowski, & Seifert, 2014; Newell, 2010), students must have an opportunity to, at the very least, be exposed to multidisciplinary teams. This emphasis on the need for exposure to multi-disciplinary problem solving holds true not only for undergraduate engineers in training, but also for graduate students focused on engineering education.
Using Science to Support and Develop Employees in the Tech Workforce—An Opportunity for Multidisciplinary Pursuits in Engineering Education

Written by
in
