AI conferences play a crucial role in education by providing a platform for knowledge sharing, networking, and collaboration, shaping the future of AI research and applications, and informing curricula and teaching practices. This work-in-progress, innovative practice paper presents preliminary findings from textual analysis of mission statements from select artificial intelligence (AI) conferences to uncover information gaps and opportunities that hinder inclusivity and accessibility in the emerging institutional field of AI. By examining language and focus, we identify potential barriers to entry for individuals interested in the AI domain, including educators, researchers, practitioners, and students from underrepresented groups. Our paper employs the use of the Language as Symbolic Action (LSA) framework [1] to reveal information gaps in areas such as no explicit emphasis on DEI, undefined promises of business and personal empowerment and power, and occasional elitism. These preliminary findings uncover opportunities for improvement, including the need for more inclusive language, an explicit commitment to diversity, equity, and inclusion (DEI) initiatives, clearer communications about conference goals and expectations, and emphasis on strategies to address power imbalances and promote equal opportunities for participation. The impact of our work is bi-fold: 1) we demonstrate preliminary results from using the Language as Symbolic Action framework to text-analysis of mission statements, and 2) our preliminary findings will be valuable to the education community in understanding gaps in current AI conferences and consequently, outreach. Our work is thus of practical use for conference organizers, engineering and CS educators and other AI-related domains, researchers, and the broader AI community. Our paper highlights the need for more intentional and inclusive conference design to foster a diverse and vibrant community and community of AI professionals.
Category: Zachary Rosenthal
-

Preconference workshop for International AI Policy Conference at MILA.
Aula Fellows presented a pre-workshop on asking hard questions on AI. Participants practiced identifying key chaarceristics of hard questions and discussing them together. During the conference that followed, several participants stood and asked hard questions, and several presenters were very happy to receive support and feedback on their most pernicious problems. We were able to build on existing collaborations and continue with or bridge-building between all the people and the people in decision-making roles on AI in society.

